PRELIMINARY

CY62135V MoBLTM CY62135V18 MoBL2 ${ }^{\text {TM }}$

128K x 16 Flash Compatible Static RAM

Features

- Low voltage range:
—CY62135V: 2.7V-3.3V
—CY62135V18: 1.65-1.95V
- Ultra-low active/standby power
- Easy memory expansion with CE /CE2 and OE features
- Automatic power-down when deselected
- Pin out compatible with standard Flash devices
- Shipped in Wafer/Die form

Functional Description

The CY62135V and CY62135V18 are high-performance CMOS static RAMs organized as 128 K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life ${ }^{\text {TM }}$ (MoBL ${ }^{\text {TM }}$) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH or CE2 LOW) or when CE is LOW and when CE2 is HIGH and both BLE and
$\overline{\mathrm{BHE}}$ are $\mathrm{HIGH}{ }^{[1]}$. The input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{15}\right)$ are placed in a high-impedance state when: deselected (CE HIGH or CE2 LOW), outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), $\overline{\mathrm{BHE}}$ and $\overline{B L E}$ are disabled (BHE, BLE HIGH), or during a write operation ($\overline{\mathrm{CE}}$ LOW, CE2 HIGH and $\overline{\mathrm{WE}}$ LOW).
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW, CE2 HIGH, and write enable ($\overline{\mathrm{WE} \text {) inputs LOW. If }}$ byte low enable ($\overline{\mathrm{BLE}}$) is LOW, then data from I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$), is written into the location specified on the address pins (A_{0} through A_{16}). If byte high enable ($\overline{\mathrm{BHE}}$) is LOW, then data from I/O pins $\left(I / O_{8}\right.$ through $\left.I / O_{15}\right)$ is written into the location specified on the address pins (A_{0} through A_{16}).
Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW, CE2 HIGH, and output enable ($\overline{\mathrm{OE}}$) LOW while forcing the write enable ($\overline{\mathrm{WE}}$) HIGH. If byte low enable ($\overline{B L E}$) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$. If byte high enable ($\overline{\mathrm{BHE}}$) is LOW, then data from memory will appear on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes.
The CY62135V/CY62135V18 are shipped in a wafer form.

Logic Block Diagram

[^0]PRELIMINARY

Wafer and Die Specifications

Mechanical Specifications

Process/Technology	CMOS, Double Metal, 0.25μ
Wafer Diameter	203.2 mm
Wafer Thickness, background	$355.6 \mu \mathrm{~m}$
Backside Wafer Surface	Silicon

Bond Pad Specifications

Bond Pad Opening	80μ
Topside Passivation	TBD
Bond Pad Metal Composition	$300 \mathrm{~A}{ }^{\circ} \mathrm{Al}, 0.5 \% \mathrm{Cu}$

Bond Pad Locations

The next figure shows the locations of the bond pads and table below provides the X and Y coordinates of these bond pads.

PAD Locations on Die (Die Size: $3.498 \mathrm{~mm} \times 5.731 \mathrm{~mm}$)

PRELIMINARY
CY62135V MoBLTM CY62135V18 MoBL2 ${ }^{\text {TM }}$

Pin Definitions

Pin Name	Location	Location	Function
A15	-1635.3	1944.925	Address
A14	-1635.300	1805.25	Address
A13	-1635.300	1633.7	Address
A12	-1635.300	1494.025	Address
A11	-1635.300	1102.475	Address
A10	-1635.300	962.8	Address
A9	-1635.300	791.275	Address
A8	-1635.300	651.575	Address
V_{CC}	-1635.300	514.275	Power
CE2	-1635.300	376.975	Active HIGH Chip Enable
WEB	-1635.300	237.275	Active LOW Write Enable
$\mathrm{V}_{\text {SS }}$	-1635.300	-186.65	Ground
BHE	-1635.300	-323.95	Active LOW Byte High Enable
$\overline{\text { BLE }}$	-1635.300	-463.625	Active LOW Byte Low Enable
NC	-1635.300	-635.175	Address Expansion for 4M
A7	-1635.300	-774.85	Address
A6	-1635.300	-946.4	Address
A5	-1635.300	-1086.075	Address
A4	-1635.300	-1477.625	Address
A3	-1635.300	-1617.3	Address
A2	-1635.300	-1788.85	Address
A1	-1635.300	-1928.525	Address
A0	1618.575	-2099.425	Address
$\overline{\mathrm{CE}}$	1618.575	-1959.725	Active LOW Chip Enable
$\mathrm{V}_{\text {SS }}$	1618.575	-1821.525	Ground
$\overline{\mathrm{OE}}$	1618.575	-1700.45	Active LOW Output Enable
D0	1618.575	-1528.925	I/O Data Bus
D8	1618.575	-1348.475	I/O Data Bus
D1	1618.575	-1147.25	I/O Data Bus
D9	1618.575	-966.8	I/O Data Bus
D2	1618.575	-795.25	I/O Data Bus
D10	1618.575	-614.8	I/O Data Bus
D3	1618.575	-413.575	I/O Data Bus
D11	1618.575	-233.125	I/O Data Bus
V_{CC}	1618.575	-95.825	Power
$\mathrm{V}_{\text {CCQ }}$	1618.575	251.375	Power for I/O Pins
BBDISB	1618.575	389.6	Byte Enable Power Down Disable ${ }^{[1]}$
D4	1618.575	533.65	I/O Data Bus
D12	1618.575	714.1	I/O Data Bus
D5	1618.575	915.325	I/O Data Bus
D13	1618.575	1095.775	I/O Data Bus
D6	1618.575	1267.3	I/O Data Bus
D14	1618.575	1447.75	I/O Data Bus
D7	1618.575	1648.975	I/O Data Bus
D15	1618.575	1829.425	I/O Data Bus
$\mathrm{V}_{\text {SSQ }}$	1618.575	1970.675	Ground for I/O Pins
A16	1618.575	2091.925	Address
PTM	-1635.300	-2295.050	Parallel Test Mode Pad, internally held low with a resistor, meant for testing purposes only.

PRELIMINARY

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad .$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied \qquad
\qquad $+$

Supply Voltage to Ground Potential \qquad .. -0.5 V to +4.6 V

DC Voltage Applied to Outputs in High Z State ${ }^{[2]}$	0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$.	0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	$\ldots .>2001 \mathrm{~V}$
Latch-Up Current	... >200 mA

DC Voltage Applied to Outputs
DC Input Voltage ${ }^{[2]}$................................ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)
Static Discharge Voltage
>200 mA

Operating Range

Device	Range	Ambient Temperature	$\mathrm{V}_{\text {cC }}$
CY62135V	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.7 V to 3.3 V
CY62135V18	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.65 V to 1.95 V

Shaded areas contain advance information.

Product Portfolio

Product	$\mathrm{V}_{\text {cc }}$ Range			Speed	Power Dissipation (Commercial)				
				Operating (l_{CC})	Standby ($\mathrm{I}_{\text {SB2 }}$)				
	$\mathrm{V}_{\mathrm{CC}(\text { min })}$	$\mathrm{V}_{\text {CC(typ) }}{ }^{[3]}$	$\mathrm{V}_{\mathrm{CC} \text { (max) }}$		Typ. ${ }^{[3]}$	Maximum	Typ. ${ }^{[3]}$	Maximum	
CY62135V	2.7 V	3.0 V	3.3 V		70 ns	7	12 mA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
CY62135V18	1.65 V	1.8 V	1.95 V	70 ns	3	7 mA	$1 \mu \mathrm{~A}$	$15 \mu \mathrm{~A}$	

Shaded areas contain advance information.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		CY62135V			Unit
				Min.	Typ. ${ }^{[3]}$	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	2.4			V
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.2		$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-0.5		0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	± 1	+1	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-1	± 1	+1	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{l} \text { lout }=0 \mathrm{~mA}, \\ & f=f_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{RC}}, \mathrm{CMOS} \\ & \text { levels } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		7	12	mA
		$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$, CMOS Levels			1	2	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current- CMOS Inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current- CMOS Inputs	$\begin{aligned} & \overline{C E} \geq V_{C C}-0.3 V \\ & V_{I N} \geq V_{C C}-0.3 V \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$			1	10	$\mu \mathrm{A}$

Notes:

2. $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})=-2.0 \mathrm{~V}$ for pulse durations less than 20 ns .
3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{C C}=V_{C C}$ Typ, $T_{A}=25^{\circ} \mathrm{C}$.

PRELIMINARY
CY62135V MoBLTM
CY62135V18 MoBL2 ${ }^{\text {TM }}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		CY62135V18			Unit
				Min.	Typ. ${ }^{[3]}$	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.5			V
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$			0.2	V
V_{IH}	Input HIGH Voltage		$\mathrm{V}_{C C}=1.95 \mathrm{~V}$	1.4		$\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-0.5		0.4	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	± 1	+1	$\mu \mathrm{A}$
l_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-1	± 1	+1	$\mu \mathrm{A}$
ICC	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{l} \\ & \mathrm{lOUT}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{RC}}, \mathrm{CMOS} \\ & \text { levels } \end{aligned}$	$\mathrm{V}_{C C}=1.95 \mathrm{~V}$		3	7	mA
		$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$, CMOS Levels			1	2	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current- CMOS Inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathbb{I N}} \leq 0.3 \mathrm{~V}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down CurrentCMOS Inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			1	15	$\mu \mathrm{A}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	8	pF

Note:
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUTo } \quad 0 \text { V }
$$

Parameters	$\mathbf{3 . 0 V}$	$\mathbf{1 . 8 V}$	UNIT
R 1	1105	15294	Ohms
R 2	1550	11300	Ohms
$\mathrm{R}_{\text {TH }}$	645	6500	Ohms
$\mathrm{V}_{\text {TH }}$	1.75	0.85	Volts

[^1]PRELIMINARY

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ${ }^{[5]}$	Min.	Typ. ${ }^{[3]}$	Max.	Unit
V_{DR}	V_{CC} for Data Retention (CY62135V18)		1.0		1.95	V
V_{DR}	V_{CC} for Data Retention (CY62135V)		1.0		3.3	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$ No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0			ns
t_{R}	Operation Recovery Time		t_{RC}			ns

Data Retention Waveform

Note:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to V_{CC} typ., and output loading of the specified $\mathrm{I}_{\mathrm{OL}} \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

CY62135V MoBLTM

PRELIMINARY

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	70 ns		Unit
		Min.	Max.	
READ CYCLE				
t_{RC}	Read Cycle Time	70		ns
$t_{\text {AA }}$	Address to Data Valid		70	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	0		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		70	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		35	ns
tlizoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[6]}$	5		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE }}$ HIGH to High ${ }^{[6,7]}$		25	ns
t LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	10		ns
$t_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		25	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		70	ns
$\mathrm{t}_{\text {DBE }}$	$\overline{\text { BHE } / \overline{\text { BLE }} \text { LOW to Data Valid }}$		70	ns
t LZBE	$\overline{\text { BHE / BLE LOW to Low Z }}$	10		ns
$t_{\text {HZBE }}$	$\overline{\text { BHE }}$ / $\overline{\text { BLE }}$ HIGH to High Z		25	ns
WRITE CYCLE ${ }^{[8,9]}$				
t_{Wc}	Write Cycle Time	70		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	60		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	60		ns
t_{HA}	Address Hold from Write End	0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	50		ns
t_{SD}	Data Set-Up to Write End	30		ns
t_{HD}	Data Hold from Write End	0		ns
$t_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		25	ns
tlzwe	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	10		ns

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Notes:

6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
7. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{H Z W E}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for write cycle \#3 (WE controlled, OE LOW) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2=\mathrm{V}_{\mathrm{IH}}$.
11. WE is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No. 2 [11, 12, 13]

Write Cycle No. 1 (产E Controlled) ${ }^{[8,12,14,15]}$

Notes:

12. $\overline{C C E}$ is the combination of both $\overline{C E}$ and $C E 2\left(\overline{C E}=V_{I L}, C E 2=V_{I H}\right)$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. Data I / O is high impedance if $O E=V_{I H}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state
16. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Typical DC and AC Characteristics

Truth Table

$\overline{C E}$	CE2	WE	OE	BHE	BLE	Inputs/Outputs	Mode
H	X	X	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	X	X	High Z	Deselect/Power-Down
X	X	X	X	H	H	High $\mathrm{Z}^{[1]}$	Deselect/Power-Down ${ }^{[1]}$
L	H	H	L	L	L	Data Out ($1 / \mathrm{O}_{\mathrm{O}}-\mathrm{l} / \mathrm{O}_{15}$)	Read
L	H	H	L	H	L	Data Out $\left(1 / \mathrm{O}_{\mathrm{O}}-\mathrm{l} / \mathrm{O}_{7}\right)$; $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ in High Z	Read
L	H	H	L	L	H	Data Out ($\mathrm{I} / \mathrm{O}_{8}-\mathrm{l} / \mathrm{O}_{15}$); $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ in High Z	Read
L	H	H	H	L	L	High Z	Deselect/Output Disabled
L	H	H	H	H	L	High Z	Deselect/Output Disabled
L	H	H	H	L	H	High Z	Deselect/Output Disabled
L	H	L	X	L	L	Data $\ln \left(1 / \mathrm{O}_{\mathrm{O}}-1 / \mathrm{O}_{15}\right)$	Write
L	H	L	X	H	L	Data $\ln \left(1 / \mathrm{O}_{\mathrm{O}}-\mathrm{I} / \mathrm{O}_{7}\right)$; $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ in High Z	Write
L	H	L	X	L	H	Data $\ln \left(1 / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}\right)$; $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ in High Z	Write

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62135V-WAF	TBD	Wafer Boxes	Industrial
70	CY62135V18-WAF	TBD	Wafer Boxes	Industrial

Shaded areas contain advance information.
Document \#: 38-00870

[^0]: Note:

 1. Tying BBDISB to V_{CC} will disable the Byte Enable Power Down Feature. Tying it to V_{SS} will enable the Byte Enable Power Down Feature. More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation.
[^1]: Shaded area contain advanced information.

