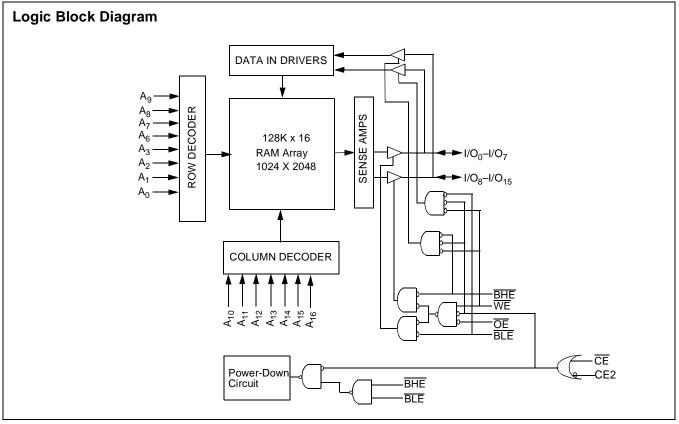


128K x 16 Flash Compatible Static RAM

Features

- Low voltage range:
 - CY62135V: 2.7V–3.3V
- Ultra-low active/standby power
- Easy memory expansion with CE /CE2 and OE features
- Automatic power-down when deselected
- Pin out compatible with standard Flash devices
- Shipped in Wafer/Die form

Functional Description


The CY62135V and CY62135V18 are high-performance CMOS static RAMs organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBLTM) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH or CE2 LOW) or when \overline{CE} is LOW and when CE2 is HIGH and both \overline{BLE} and

 $\overline{\text{BHE}}$ are HIGH^[1]. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH or CE2 LOW), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, CE2 HIGH and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking chip enable $\overline{(CE)}$ LOW, CE2 HIGH, and write enable $\overline{(WE)}$ inputs LOW. If byte low enable $\overline{(BLE)}$ is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₆). If byte high enable $\overline{(BHE)}$ is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking chip enable (\overline{CE}) LOW, CE2 HIGH, and output enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. If byte low enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If byte high enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62135V/CY62135V18 are shipped in a wafer form.

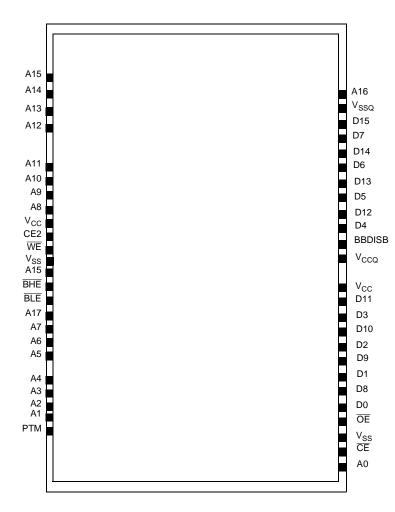
PRELIMINARY

Note:

1. Tying BBDISB to V_{CC} will disable the Byte Enable Power Down Feature. Tying it to V_{SS} will enable the Byte Enable Power Down Feature. More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation.

Wafer and Die Specifications

Mechanical Specifications


Process/Technology	CMOS, Double Metal, 0.25µ		
Wafer Diameter	203.2 mm		
Wafer Thickness, background	355.6 μm		
Backside Wafer Surface	Silicon		

Bond Pad Specifications

Bond Pad Opening	80μ		
Topside Passivation	TBD		
Bond Pad Metal Composition	300 A° Al, 0.5% Cu		

Bond Pad Locations

The next figure shows the locations of the bond pads and table below provides the X and Y coordinates of these bond pads.

PAD Locations on Die (Die Size: 3.498 mm x 5.731 mm)

Pin Definitions

Pin Name		Location	Function
A15	-1635.3	1944.925	Address
A14	-1635.300	1805.25	Address
A13	-1635.300	1633.7	Address
A12	-1635.300	1494.025	Address
A11	-1635.300	1102.475	Address
A10	-1635.300	962.8	Address
A9	-1635.300	791.275	Address
A8	-1635.300	651.575	Address
V _{CC}	-1635.300	514.275	Power
CE2	-1635.300	376.975	Active HIGH Chip Enable
WEB	-1635.300	237.275	Active LOW Write Enable
V _{SS}	-1635.300	-186.65	Ground
BHE	-1635.300	-323.95	Active LOW Byte High Enable
BLE	-1635.300	-463.625	Active LOW Byte Low Enable
NC	-1635.300		Address Expansion for 4M
A7	-1635.300		Address
A6	-1635.300	-946.4	Address
A5	-1635.300		Address
A4	-1635.300	-1477.625	Address
A3	-1635.300	-1617.3	Address
A2	-1635.300	-1788.85	Address
A1	-1635.300	-1928.525	Address
A0	1618.575	-2099.425	Address
CE	1618.575	-1959.725	Active LOW Chip Enable
V _{SS}	1618.575	-1821.525	Ground
ŌĒ	1618.575	-1700.45	Active LOW Output Enable
D0	1618.575	-1528.925	I/O Data Bus
D8	1618.575	-1348.475	I/O Data Bus
D1	1618.575	-1147.25	I/O Data Bus
D9	1618.575	-966.8	I/O Data Bus
D2	1618.575	-795.25	I/O Data Bus
D10	1618.575	-614.8	I/O Data Bus
D3	1618.575	-413.575	I/O Data Bus
D11	1618.575	-233.125	I/O Data Bus
V _{CC}	1618.575	-95.825	Power
V _{CCQ}	1618.575	251.375	Power for I/O Pins
BBDISB	1618.575	389.6	Byte Enable Power Down Disable ^[1]
D4	1618.575	533.65	I/O Data Bus
D12	1618.575	714.1	I/O Data Bus
D5	1618.575	915.325	I/O Data Bus
D13	1618.575	1095.775	I/O Data Bus
D6	1618.575	1267.3	I/O Data Bus
D14	1618.575	1447.75	I/O Data Bus
D7	1618.575	1648.975	I/O Data Bus
D15	1618.575	1829.425	I/O Data Bus
V _{SSQ}	1618.575	1970.675	Ground for I/O Pins
A16	1618.575	2091.925	Address
PTM	-1635.300		

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with
Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V

Operating Range

DC Voltage Applied to Outputs in High Z State ^[2] 0.5V to V_{CC} + 0.5V DC Input Voltage ^[2]	
Output Current into Outputs (LOW) 20 mA	
Static Discharge Voltage	
Latch-Up Current	

Device	Range	Ambient Temperature	V _{CC}
CY62135V	Industrial	-40°C to +85°C	2.7V to 3.3V
CY62135V18	Industrial	−40°C to +85°C	1.65V to 1.95V

Shaded areas contain advance information.

Product Portfolio

						Power Diss	ipation (Co	mmercial)
	V _{CC} Range			Operating (I _{CC})		Standby (I _{SB2})		
Product	V _{CC(min)}	V _{CC(typ)} ^[3]	V _{CC(max)}	Speed	Typ. ^[3]	Maximum	Typ. ^[3]	Maximum
CY62135V	2.7V	3.0V	3.3V	70 ns	7	12 mA	1 µA	10 µA
CY62135V18	1.65V	1.8V	1.95V	70 ns	3	7 mA	1 μΑ	15 μA

Shaded areas contain advance information.

Electrical Characteristics Over the Operating Range

					CY62135\	1	
Parameter	Description	Test Condit	Test Conditions		Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.3V$	2.2		V _{CC} + 0.5V	V
VIL	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	<u>+</u> 1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-1	<u>+</u> 1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}, CMOS$ levels	V _{CC} = 3.3V		7	12	mA
		$I_{OUT} = 0 \text{ mA}, f = 1 \text{ MHz}$, CMOS Levels		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:cells} \begin{array}{l} \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V, \ f = f_{MAX} \end{array}$				100	μΑ
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$ \overline{CE} \ge V_{CC} - 0.3V \\ V_{IN} \ge V_{CC} - 0.3V \\ or V_{IN} \le 0.3V, f = 0 $			1	10	μΑ

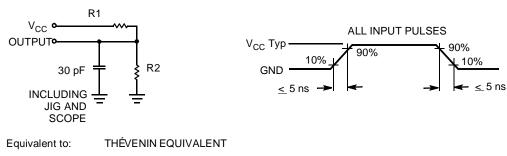
Notes:

V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Electrical Characteristics Over the Operating Range

					CY62135V	18	
Parameter	Description	Test Condit	Test Conditions		Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{CC} = 1.65V$	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$			0.2	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 1.95V$	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 1.65V$	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-1	<u>+</u> 1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-1	<u>+</u> 1	+1	μA
ICC	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, f=f _{MAX} = 1/t _{RC} , CMOS levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz	, CMOS Levels		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs					100	μΑ
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{l} \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \leq 0.3V, f = 0 \end{array}$			1	15	μΑ

PRELIMINARY


Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

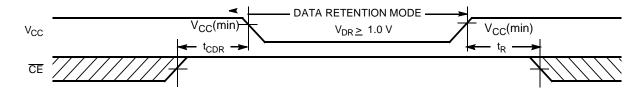
Note:

4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

R_{TH} OUTPUT • V

Parameters	3.0V	1.8V	UNIT
R1	1105	15294	Ohms
R2	1550	11300	Ohms
R _{TH}	645	6500	Ohms
V _{TH}	1.75	0.85	Volts


Shaded area contain advanced information.

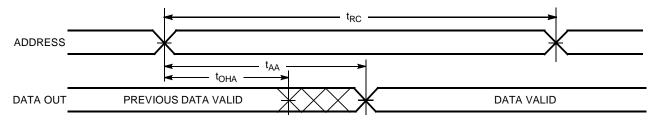
Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[5]	Min.	Typ. ^[3]	Max.	Unit
V _{DR}	V _{CC} for Data Retention (CY62135V18)		1.0		1.95	V
V _{DR}	V _{CC} for Data Retention (CY62135V)		1.0		3.3	V
ICCDR	Data Retention Current	$\label{eq:V_CC} \begin{split} & \frac{V_{CC}}{CE} = 1.0V \\ & \overline{CE} \ge V_{CC} - 0.3V, \\ & V_{IN} \ge V_{CC} - 0.3V \text{ or} \\ & V_{IN} \le 0.3V \\ & \text{No input may exceed} \\ & V_{CC} + 0.3V \end{split}$		0.1	1	μA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Note:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

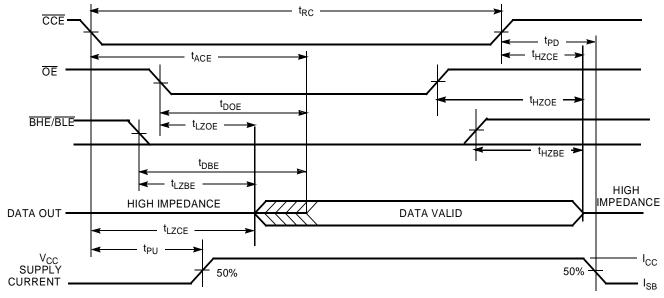


Switching Characteristics Over the Operating Range^[5]

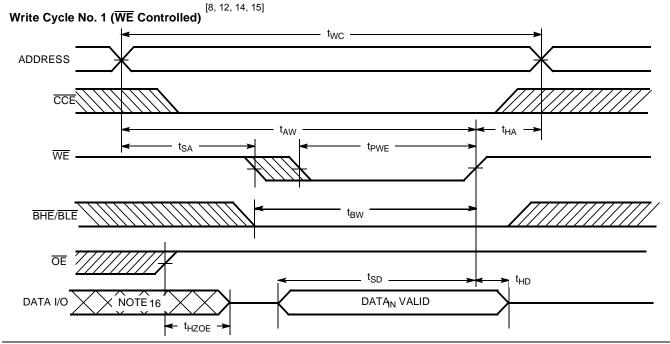
		70 ns		
Parameter	Description	Min.	Max.	Unit
READ CYCLE	· ·			•
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid	70		ns
t _{OHA}	Data Hold from Address Change	0		ns
t _{ACE}	CE LOW to Data Valid	70		ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns
t _{LZBE}	BHE / BLE LOW to Low Z	10		ns
t _{HZBE}	BHE / BLE HIGH to High Z		25	ns
WRITE CYCLE ^[8, 9]			•	
t _{WC}	Write Cycle Time	Write Cycle Time 70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns

Switching Waveforms

Notes:

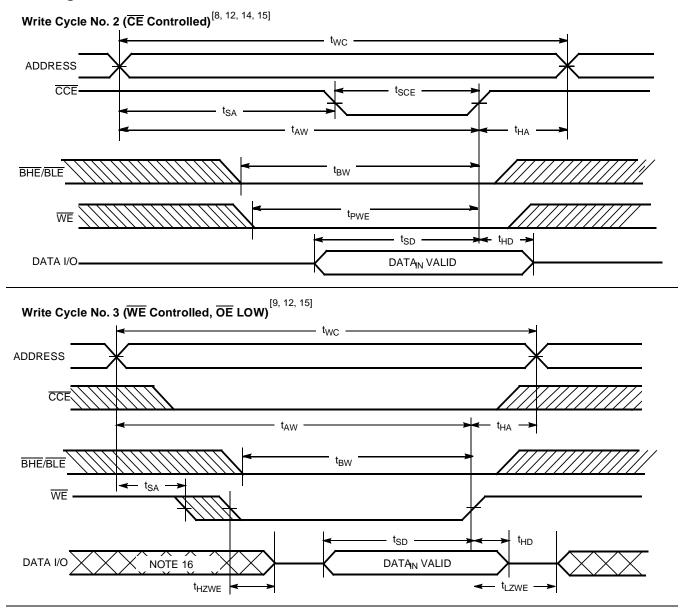

10. Device is continuously selected. $\overline{OE}, \overline{CE} = V_{IL}, CE2 = V_{IH}$. 11. \overline{WE} is HIGH for read cycle.

<sup>At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
t_{HZCE}, t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.</sup>



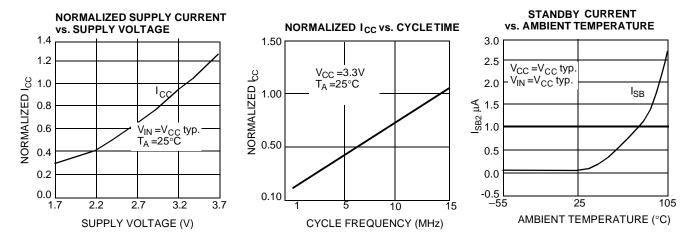
Switching Waveforms (continued)

PRELIMINARY


Notes:

- CCE is the combination of both CE and CE2(CE = V_{IL}, CE2 = V_{IH}).
 Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

CY62135V MoBL™ CY62135V18 MoBL2™


Switching Waveforms (continued)

PRELIMINARY

Typical DC and AC Characteristics

Truth Table

CE	CE2	WE	OE	BHE	BLE	Inputs/Outputs	Mode
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down
Х	Х	Х	Х	Н	Н	High Z ^[1]	Deselect/Power-Down ^[1]
L	Н	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read
L	Н	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read
L	Н	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read
L	Н	Н	Н	L	L	High Z	Deselect/Output Disabled
L	Н	Н	Н	Н	L	High Z	Deselect/Output Disabled
L	Н	Н	Н	L	Н	High Z	Deselect/Output Disabled
L	Н	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write
L	Н	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62135V-WAF	TBD	Wafer Boxes	Industrial
70	CY62135V18-WAF	TBD	Wafer Boxes	Industrial

Shaded areas contain advance information.

Document #: 38-00870

[©] Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.